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Crossover Equation of State for the Thermodynamic
Properties of Mixtures of Methane and Ethane in the
Critical Region
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We present an equation of state for the thermodynamic properties of mixtures
of methane and ethane in the critical region that incorporates the crossover
from singular thermodynamic behavior near the locus of vapor-liquid critical
points to regular thermodynamic behavior outside the critical region. The equa-
tion of state yields a satisfactory representation of the thermodynamic-property
data for the mixtures in a large range of temperatures and densities.
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1. INTRODUCTION

Asymptotically close to the critical point the thermodynamic properties of
fluids satisfy scaling laws with universal scaling functions that are the same
as those for the three-dimensional Ising model [1-3]. Binary mixtures
belong to the same universality class and have the same expressions for the
thermodynamic properties provided that suitable isomorphic variables are
used [4-6]. To extend the description of the properties to a wider region
around the critical point one needs to incorporate crossover from Ising-like
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asymptotic behavior near the critical point to mean-field (van der Waals-
like) behavior far away from the critical point. Such a crossover equation
of state has been developed by Chen et al. for one-component fluids [7]
and extended to mixtures by Jin et al. [8]. In this paper we adopt an
improved version of the crossover equation of state proposed by Jin [9]
and apply it to mixtures of methane and ethane.

2. ISOMORPHIC FREE-ENERGY DENSITY

The theory of critical phenomena in one-component fluids can be
extended to mixtures provided that one uses appropriate isomorphic ther-
modynamic quantities [4-6, 10]. For this purpose we use here the ther-
modynamic variables adopted by Jin et al. [8] as further discussed by
Anisimov and Sengers [11].

Let U, 4, and V be the specific internal energy, Helmholtz free energy
and volume taken per mole. For one-component fluids the critical cross-
over behavior of the thermodynamic properties has been specified in terms
of the Helmholtz free-energy density 4/V as a function of the density
p=1/V and the inverse temperature 1/7 [7, 12-14]. To extend the theory
to binary mixtures, we define [§, 11]
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where P is the pressure, i, and u, are the chemical potentials of the two
components, and R is the molar gas constant.

The extension of the theory to mixtures is based on the principle that
a suitably chosen isomorphic free-energy density will have the same form
as the Helmholtz free-energy density of one-component fluids. One
possibility is to treat the chemical potential x, of one of the components
referred to as the solvent as the ordering field and the chemical-potential
difference p=p>—u, as a hidden or irrelevant field. A dimensionless
isomorphic free-energy density A;,, may then be defined as

Ao =4 —ppix (2)

so that
dA,=6dT+fi, dp — xp dji (3)
where i = U/V is the energy density, x the mole fraction of the solute, and

A=i—A, 4)
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The choice of /i, as the ordering field and /i as the hidden field is not con-
venient in practice, since in the pure-component limits /i, or [, diverges.
This problem was avoided by Leung and Griffiths [15], who introduced
an orderiqg field /» and a hidden field ¢ that are related to the “activities”
¢!, and ¢ In the form adopted by Jin et al. [8], they are defined by

h=In(e™ 4 ), C=m (5)
so that
Ar=h+In(1={), fy=h+In¢ (6)
A Legendre transformation of the form
Ag=hp—P (7)
yields
dAgy=0dT+hdp—wd; (8)
with
x—¢
g .
A, and A, are related by
A=A —pIn(1-{) (10)

Ar is an alternative dimensionless isomorphic free-energy density when
taken at constant {. The advantage of the choice of A, as the isomorphic
free-energy density is that the hidden field variable { will vary from 0 to 1,
when the concentration \ varies from 0 to 1. Unlike the concentration v,
the variable { will have the same value in two coexisting phases.

The present formulation of an equation of state for fluid mixtures in
the critical region is restricted to fluid mixtures for which the critical points
of the two pure components are connected by a continuous line of
vapor-liquid critical points. The critical parameters T,, p., and P_ will
vary along this line of critical points as functions of the concentration x or,
alternatively, as functions of the variable . We find it convenient to intro-
duce the deviation variables

. ”——”’:‘()“ (11)
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Equation (8) may then be rewritten as
dAg=—-Udt+hdp—Wd (12)
with

x—¢ 1dT.
———p+ U=—=
-0’7 T

O=a/RTL), W= (13)

At fixed ¢, A1, p, {) will be the same singular function of r and p as the
Helmholtz free-energy density of a one-component fluid [7], with all
system-dependent constants depending parametrically on the hidden field ¢
[8]. From Egs. (12) and (13) it follows that the composition x is related
to the variable { by

\_:,V_cu—a{[aficn-] _lch(‘:)[a/‘icw] } (14)
Ty ., T & o],

3. CROSSOVER FREE-ENERGY DENSITY

A crossover equation of state for the critical part 44 of a dimen-
sionless free-energy density 4= AT./VP_T has been developed by Chen et
al. for one-component fluids [7] and extended to mixtures by Jin et al.
[8]. They start from a classical Landau expansion for 44, which is then
transformed or “renormalized” so as to incorporate the effects from long-
range critical fluctuations. Retaining six terms in the classical Landau
expansion they obtain for the renormalized free-energy density
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where 7 is a temperature-like variable and M is a density-like variable that
are related to the physical variables r and 45 by

044,
oM
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Table I.  Universal Constants

v=0.630

5 =0.0333

a=2—-3r=0.110
w=4/v=0.80952
w,=2.1
u*=0472

The coefficients #((), and a;({) in Eq. (15) and ¢({). ¢,(¢), ¢({), and d,({)
in Eq.(16) are system-dependent coeflicients which, for mixtures, will
depend on the variable {, while the coefficient u* in Eq. (15) is a universal
constant (u* =0.472). The functions 7, %, %, ¥', and # in Eq. (15) are
rescaling functions that can be expressed in terms of a crossover function
Y through

T = Y(Z— /v)jw g/ = Y—:]/m ,?/ = Yl/m

3 . v y
y = Y(wu"l/._)/u)' N4 =_—_(Y—:x/(m_1)
oA

where v, 5, and o« =2 — 3v are universal critical exponents that characterize
the asymptotic critical scaling behavior, while w = 4/v (4=0.51) and 0, =
A4,/v=2.1 are universal critical exponents associated with the leading
symmetric and asymmetric correction terms [2, 16, 17]. The values of these
universal constants are summarized in Table L

The crossover function Y in the expressions, Eq. (17), for the rescaling
functions is to be determined from the set of coupled algebraic equations

1—[1-@()] Y= ){1+< f\“)] " o (18)
}\'2=I.7+%M2L7( YurADU + -2 "‘(“ 3Gy gy
1+ 908(E) ppagyagpae
244D pragggrn 928 pgag e (19

2 2
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Equations (18) and (19) are those recently proposed by Jin et al. [9, 18].
They differ from those employed earlier by our research group [7, 8, 12] in
two respects, namely, in the choice of the exponent w, in Eq. (18) and in
the number of terms retained in Eq. (19) for 2. While in the earlier work
the renormalized expansion Eq. (15) for 44, based on a six-term Landau
expansion was introduced, only the first two terms in the corresponding
expansion, Eq. (19), for x? were retained. Equation (19) is more fully con-
sistent with the number of terms retained in the Landau expansion for the
free-energy density. The parameter x is closely related to the inverse
correlation length [19] and serves as a measure of the distance from the
critical point [20]. In the asymptotic critical limit

lim Y= <’—> (20)

AjK = o uA

and one recovers from Eq.(15) the asymptotic critical power laws with
leading Wegner correction terms [21]. The classical limit corresponds to

lim Y=1 (21)

Ak —0

so that Eq. (15) reduces to the classical Landau expansion.

The exponent o, in Eq. (18) is an exponent that accounts for the rate
at which the final crossover to the classical limit occurs. The higher the
value of @, the faster we reach the classical limit, i.e., the faster Y will go
to unity when we move away from the critical point. From an analysis of
the spherical model, Nicoll and Bhattacharjee [22] found w =2, and this
is the value that has been adopted in our previous work [7,8,12,19].
However, higher-order terms in the Landau expansion may contribute to
the actual crossover behavior and we found that an effective value 3/2 for
the exponent @, yielded empirically an increased range of validity of the
crossover equation of state [9, 14].

The actual dimensionless free energy density 44 is related to 4A4,,
given by Eq. (15), by a transformation of the form [7, 8]

i 3 044 044
— e r r 22
AA(T,A/LQ) AA,.(I‘,AJ,L_.) C(Q)li anllcli ot lek ( )

Taking into account the different ways in which 4 and 4 have been made
dimensionless, we obtain for the effective Helmholtz free-energy density

P(Q)

RT"(Q’) [A/—I'(T, Aﬁ’ €)+20(T* §)+pho(f, C)] (23)

/‘ien‘(f, ps 4’) =
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where .Zo(r,C) and /hy(z, {) represent analytic noncritical contributions,
which in practice are represented by truncated Taylor series expansions:

1

i)t/ (24)

—

4
Ade, =Y 4,07,  hfn.{)=
j=0

it

£)

with system- dependent coefficients A (¢) and ji;({). Since A—p(8dfap),
— P, it follows that A,({)= —1.

Equation (23) yields a fundamental equation for the effective Helmholtz
free-energy density from which all other thermodynamic properties can
be calculated. Some of the relevant thermodynamic derivatives are given
in Appendix A. In this paper we apply the equation of state, given by
Eq. (23), first to methane and to ethane and then to mixtures of methane
(component 1) and ethane (component 2).

Pe

g

4. APPLICATION TO ONE-COMPONENT FLUIDS

The crossover equation of state for the one-component fluids are
obtained from Eq.(23) by taking { =0 (methane) and { =1 (ethane). To
specify the crossover equation of state we need the critical parameters 7%,
p'"', and P!, where superscript i =1 corresponds to methane and i=2 to
ethane. The values of the critical parameters are either obtained from direct
experimental observations or deduced from an asymptotic analysis of
experimental thermodynamic data very close to the critical point.

The crossover parameters '’ and A'", the scaling field parameters ¢!”,
¢, ¢ and di", the coefficients aj;’ of the Landau expansion, and the
background parameters A;” are to be determined from a fit of the cross-
over equation of state to experimental P-p-T data for methane and ethane.
The coefficients /i for j>2 determine background contributions to the
caloric properties and can be obtained from fits to experimental specific
heat capacities or speed-of-sound data. The coefficients jig’ and i}’ are
related to the zero points of entropy and energy of the two fluid com-
ponents and they do not enter into the calculation of experimentally
observable thermodynamic properties like pressures and specific heat
capacities. However, for the mixtures zy(() and fi,({) are no longer
arbitrary, since they are related to the entropy of mixing and energy of
mixing as further discussed in Section 5.

Scientists at the National Institute of Standards and Technology have
developed a computer program for the calculation of the thermodynamic
properties of mixtures, including mixtures of methane and ethane [23],
referred to as NIST14 [24,25]. This computer program is based on a
classical principle of extended corresponding states and, hence, does not
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Fig. 1. Range of validity of the crossover equation of
state for methane. () Experimental P-p-T data [29-31]:
(@) Experimental C, data [32-34] and C, values
calculated from the global equation [27].

attempt to include the singular behavior of the thermodynamic properties
of fluids near the critical point. However, NIST14 does yield a satisfactory
representation of the thermodynamic properties of mixtures of methane
and ethane away from the critical locus of the mixture. We have, therefore,
made an attempt to make our crossover equation of state consistent with
the values calculated from NIST14 outside the critical region.

4.1. Methane

Jin et al. [26] have applied an earlier simpler version of our crossover
equation of state to methane to be used in conjunction with a global equa-
tion of state developed for methane by Setzmann and Wagner [27].
However, in order to develop a theoretically based equation of state for
mixtures in the critical region, we want to start from a single crossover
equation of state for the two pure-fluid components applicable in as large
a range of temperatures and densities as possible. Hence we rerepresent the
thermodynamic properties of methane in terms of the crossover equation of
state formulated in this paper. For the critical parameters of methane we
continued to use the values obtained by Kleinrahm and Wagner [28] and
adopted by Setzmann and Wagner [27] and by Jin et al. [26]

TV =190.564 K, P!"=45992 MPa, p""=10.122mol -L~" (25)
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The system-dependent coefficients, except for ﬁ;”, were determined
by fitting the crossover equation of state to experimental P-p—T data
reported by Wagner and co-workers [29,30] and by Trappeniers et al.
[31]. With estimated errors in pressure, temperature and density as small
o,=5x10">MPa, 6r=1x10"*K, and ¢,=0.15 kgm~* [26], we find
that the equation represents the experimental data with a reduced chi-
square of 3.57 in a range of temperatures and densities bounded by

T+ 1.245% <05, > —0.07 (26)

This range of temperatures and densities is shown in Fig. 1. Percentage
deviations of the experimental pressures from the calculated pressures are
shown in Fig. 2; they are generally within 0.15% inside the region specified
above except near the boundary at higher densities, where the deviations
increase up to 0.35%.

The coefficients 4" (j>3) account for background contributions to
the caloric properties and they were determined by fitting the crossover
equation to experimental specific heat capacities and speed-of-sound data.
Specifically, we used experimental C,- data obtained by Younglove [32] as
corrected by Roder [33], experimental C, data obtained by Anisimov et
al. [34] with temperatures shifted by 0.114 K as discussed by Kiselev and
Sengers [35], and experimental speed-of-sound data obtained by Gammon
and Douslin [36], by Straty [37], and by Trusler and Zazari [38]. In
addition we used C, values calculated from the global equation [27] at

0.50

0.25

Deviation in P,
N o

F o

5 =3

1 1

- =]
9-50 55 100 150 200 250

p, kg.m™

Fig. 2. Percentage deviations of the experimental
pressures reported by Wagner and co-workers [29, 30]
and by Trappeniers and co-workers [31] for methane from
values calculated with the crossover equation of state.
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temperatures up to 375 K in the far away region. The C,. data are represented
with a standard deviation of 2.5% and the speed-of-sound data with a
standard deviation of 1.5 %, which is within the accuracy of the experimen-
tal data. The values of the system-dependent coefficients in our crossover
equation of state are presented in Table 1I. Percentage deviations of the
experimental C,, data from the calculated values of C,, are shown in Fig. 3.
The coeflicient /'’ was arbitrarily set to zero.

The actual values for the speed of sound of methane are shown in
Fig. 4. Figure 4 confirms that our crossover equation of state yields a good
representation of the speed of sound in a large range of temperatures. In
Fig. 5 we show a comparison of our crossover equation with experimental

Table II.  System-Dependent Constants

k( 1y kil}
Parameter (methane) (ethane) ktm

Crossover

it 0.3550 0.3695 0

A 0.8793 1.0000 0
Scaling-field

¢ 1.2827 1.5233 -0.763

¢, 2.5899 24897 0417

¢ —0.0940 —0.09919 0

d, ~0.7586 —0.8601 0
Classical

Qys 0.1873 0.2565 0

™ 0.5337 0.7511 0

a., 0.3752 0.3648 0

s 1.1540 1.187 0
Equation-of-state background

A, —-4.9787 —5.4366 9.088

A, 5.9455 7.0270 24.227

A, 3.3181 6.9056 0.713

A, ~5.214 —11.758 0
Caloric background

It 0 -2.16 1.747

s —12924 —19.23 3.1

iis ~9.0926 —18.59 34.358

iy 6.3061 10.45 —26.523

fis —14.218 —3358 89.72

e 0 0 42457

e 0 0 -186.4

Molar mass (g-mol ~') 16.043 30.069
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Deviation in C, , %

Fig. 3. Percentage deviations of the experimental C,- data
[32-34] for methane from values calculated with the cross-
over equation of state.

Cp data reported by Kasteren and Zeldenrust [39] and by Jones et al.
[40]. which were not used in the determination of the values of the system-
dependent constants for methane.

In Fig. 6 we show the densities and saturation pressures of the coexist-
ing vapor and liquid phases below the critical temperature compared with
the experimental data reported by Kleinrahm ahd Wagner [28], which
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Fig. 4. Sound velocity of ethane at various temperatures as a func-
tion of density. The symbols indicate experimental data [36-38] and
the curves represent values calculated with the crossover model.
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were not used in the fits of the crossover equation. The figure confirms that
below the critical temperature, the crossover equation yields a satisfactory
representation of the data for T <175 K, i.e., for t> —0.07 as specified in
Eq. (26). Below 175 K there are some systematic deviations for the vapor
pressures and liquid densities.

An alternative, more phenomenological crossover equation of state for
methane and ethane has been proposed by Kiselev and Sengers [35]. This
alternative crossover equation of state is discussed in Appendix B and its
range of validity is comparable to the range of validity, Eq. (26), of the.
crossover equation formulated in the present paper. The crossover equation
of Kiselev and Sengers and our crossover equation represent the
experimental P—p-T data with similar accuracy. Our crossover equation
yields a good representation of the isochoric specific heat calculated from
the global equation of Setzmann and Wagner [27] at temperatures farther
away from T, up to T'=375 K, but the crossover equation of Kiselev and
Sengers is in better agreement with experimental C,. data of Anisimov et al.
[34] very close to T.. In Fig. 7 we have plotted C, and C, of methane as
a function of temperature at p = p_ as calculated from the crossover equa-
tion presented in this paper, from the earlier crossover equation of Jin et
al. [26] and from the crossover equation of Kiselev and Sengers [ 35]. Our
crossover equation and the earlier crossover equation of Jin et al. [26]
yield essentially identical results. The difference between the values of the
specific heat capacities as calculated from our crossover equation and that
of Kiselev and Sengers [35] is probably a measure of the absolute
accuracy with which the specific heat capacities of methane near the critical
point can be calculated.

4.2. Ethane

The crossover equation of state described in this paper was originally
formulated by Jin and applied to ethane [9, 18]. The values adopted for
the critical parameters of ethane are [ 18]

“'=305322 K, P.=48718 MPa, p P =68592mol-L~" (27)

The values of @, AP, 2, ¢, ¢, d\?, ai’, and 4>’ were obtained by
fitting the crossover equation of state to experimental P—p-T data reported
by Douslin and Harrison [41]. The values of >’ were determined from a
fit to experimental C, data reported by Shmakov [42]. A comparison of
the crossover equation with the experimental P-p~T and C, data for
ethane will be presented elsewhere [ 18]. Here we show in Fig. 8 only the
densities and saturation pressures of the coexisting vapor and liquid phases
below the critical temperature. This figure is to be compared with Fig. 6 for

methane.
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Fig. 8. Densities (a) and saturation pressures (b) of the coexisting vapor and liquid phases
of ethane below the critical temperature. The symbols represent experimental density data
[41,43] and experimental vapor-pressure data [41]. The curves represent the values
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Fig. 9. Isochoric specific heat capacity C- of ethane as a function of tem-
perature. The solid curves represent values calculated with the crossover
equation, and the dashed curves values calculated with NISTI4 [24].
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The experimental C, data of Shmakov [42] are limited to tem-
peratures within |7} <0.1. We found that by changing the caloric back-
ground parameters ji!*’ we could get an equally good representation of
these experimental C, data while obtaining better consistency with the
values for the specific heat capacity calculated with NIST14 farther away
from the critical temperature as indicated in Fig. 9. The values adopted for
the system-dependent constants for ethane are included in Table II. The
coeflicient ji{?’ #0 was selected by a procedure discussed in the next sec-
tion. In terms of reduced temperatures and densities the range of validity
of the crossover equation for ethane is approximately the same as the range
for methane given by Eq. (26).

5. APPLICATION TO MIXTURES

In order to apply the crossover equation of state to mixtures we need
the critical parameters T.({), P.({), and p({) as a function of the field
variable (. However, the actual experimental information for these
parameters is avaiable only as a function of the concentration x. The
variable x is to be converted into the variable { by using Eq.(14).
However, for this purpose we need A,.;, which in turn depends on T,({),
P.({), and p (). Although it is possible to go through this procedure
[9, 18], the procedure becomes much simpler if the field variable { is
selected such that at the critical locus it becomes numerically equal to the
mole fraction x:

x=_ for T=T.,, P=P,, p=p. (28)

We refer to this condition as the critical-line condition (CLC) and it has been
introduced by many investigators [8, 10, 11,44-52]. The experimentally
accessible thermodynamic properties of the mixture will be independent of
the zero point of the entropy and energy selected for the two pure-fluid
components and, hence, independent of the coefficient agd, a®, ai,
and >). However, the hidden field { and the ordering field & will actually
depend on the choices adopted for the zero points of entropy and energy
as follows from Eq.(5). We can use the freedom of choice of the zero
points in part in an attempt to satisfy the CLC as required by Eq. (28).
Nevertheless, for the variables adopted in this paper, it is impossible to
satisfy the CLC exactly and it introduces an approximation as discussed by
Anisimov and Sengers [11]. For mixtures of carbon dioxide and ethane

the CLC has been shown to be a good approximation [9, 18] and we
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adopt the CLC for mixtures of methane and ethane also. Substitution of
Eq. (14) with Eq. (28) yields for the CLC

W=D,
=( PC(C)RG(Q) (29)
with
= A0+ AT PO P
=[Ax(O) +Ao(0)] a pA0) TS dC fol$)+ T(O) de
PL)dT,
T2 & oo

We note that Eq. (30) corrects Eq. (4.12) in Ref. 8. The CLC requires that
G({)=0 for T=T.,, P=P, p=p. (31)
To implement the CLC we find it convenient to define
Aol 0) = Z ({) ol ) (32)
where Z ()= P({)/pAL) RT (). Equation (30) then reduces to

d,uo PL{) dT, d(P /T

G(() = & T d& i,()] — & (33)
The CLC condition is satisfied if we demand that
diy({) P({)  dT, [ ] 1 dPJT.)
= + ——= (34
& R0 @ OOt T Y

The expressions for the pressure, the specific heat capacities and the speed
of sound of the mixture do not depend on /iy(¢) directly, but only on its
first and second derivatives with respect to {. These derivatives can be
calculated readily from Eq. (34). However, to calculate the excess enthalpy,
one needs fiy({) which is to be obtained by integrating Eq.(34), as was
done by Jin et al. [8] for mixtures of carbon dioxide and ethane.

In principle, there are a number of different ways in which one can
implement the CLC as expressed by Eq.(31). In applying a scaled cross-
over equation of state to mixtures of carbon dioxide and ethane, Jin et al.
[8] took /i,({)= —A4,({) and then calculated fi,({) from Eq.(34). The
CLC as applied here is similar to the way the CLC was previously
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implemented by Povodyrev et al. for a representation of the thermo-
dynamic properties of methane and ethane in terms of a parametric scaled
equation of state for the asymptotic critical thermodynamic behavior [51].
The internal energy density & = U/V and the entropy density § =S/V on the
critical line are given by

f(x) = = Po(x)[A(x) +1,(x)] (35)

ax) Px)
TAx) Tx)

Sx)= = pdX)R[AG(x) +xIn x4+ (1 —x) In(1 —x)] (36)

From Eq.(35) we see that the choice ji,= —4,({) implies that 4,=0
everywhere along the critical locus [8]. In the present approach j,(() is
left free but ji,({) and, hence, §.(x) is restricted by the solution of Eq. (34).

To specify the crossover equation for 4 of the mixture, we also need
the system-dependent parameters #({), A({), c (), ¢, (), (), dy({), a(0),
A,({), and @,({) for j=3, to be designated k;({), as a function of the
variable {. In the case of mixtures of carbon dioxide and ethane, it was
possible to interpolate all system-dependent k,({) linearly between k! for
(=0 and k}z’ for { =1, except for the background coefficient 7,(¢) [9, 18].
However, methane and ethane have significantly different critical tem-
peratures and a simple linear interpolation will not be adequate. Following
the earlier work of Kiselev and co-workers [50, 517, we assume that ki ({)
will depend on { primarily through the isomorphic critical compressibility
factor Z({), which is written in the form

ZO=(1=0Z"+{Z2+ 4Z () (37)

where Z(" and Z? are the critical compressibility factors of methane and
ethane, respectively. We then represent the system-dependent coefficients
k;({) in the crossover equation of state by interpolation functions of the form

kD = (1= ) kD + kP + k™ 4Z(0) (38)

where k™ are mixing coefficients to be determined by fits to available
thermodynamic property data for the mixtures.

As mentioned earlier, the coefficient #,({) is determined implicitly by
Egs. (32) and (34). In the equation for f,({)

A== a0+ P + ™ 4240 (39)

we arbitrarily took /i!"’=0 for methane, but the coefficient 2}* for ethane
and the mixing coefficient 2{™ were left as adjustable parameters.
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6. MIXTURES OF METHANE AND ETHANE

We have applied our scaled crossover equation for the effective
isomorphic Helmholtz free-energy density to represent experimental thermo-
dynamic-property data for mixtures of methane and ethane. To determine
the system-dependent parameters in the crossover equation we have used
the following experimental information:

(1) experimental P-p—T-x data obtained by Haynes et al. [ 53] for
three concentrations (0.31474, 0.49783, and 0.65472 mole frac-
tions of ethane);

(i1) experimental P—p-T-x data obtained by Bespalov et al. [ 54] for
three concentrations (0.0986, 0.3995, and 0.84 mole fractions of
ethane);

(1i1) experimental specific heat capacities obtained by Nagaev et al.
[55] for three concentrations (0.0986, 0.3995, and 0.84 mole
fractions of ethane); and

{iv) experimental specific heat capacities obtained by Mayrath and
Magee [56] for three concentrations (0.31474, 0.49783, and
0.65472 mole fractions of ethane).

Furthermore, to extend the range of validity of the crossover equation
for mixtures to higher temperatures we have supplemented the experimental
C,. . data with C. . values calculated from NIST14 [24]. The range of tem-
peratures and densities of the data used in the analysis is shown in Fig. 10.

We also need equations for the critical temperature 7.({), the critical
density p({). and the critical pressure P ({) as functions of the hidden field
{. Since along the critical line { = x, the quantities T.({), p({), and P(()
depend on { in the same way as on v, it follows that

T =Tdx), pdO=pdx),  PAl)=PLx) (40)

In practice, we represent the critical parameters of the mixtures by polyno-
mials of the form [8]

Tx) =T (1 =x)+ T2 x + (T, + Tox + Tax?) x(1 — x) (41)

1 1 | 7
S == (1 =X} +—5 x+ (0, + 023+ 0357) x(1 = x) (42)
px) pe Pt
P(x) PV PR i
RTC(.\‘)= RT<1">(1 —.\')-l-TQW.\'+(Pl +Pyx+PyxY) x(1~x) (43)

where x is the concentration of ethane and where TV, p!”, and P" are the

c

critical parameters of methane (i =1) and ethane (i =2).
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Fig. 10. Temperatures and densities of the thermodynamic-property values used in the deter-

mination of the system-dependent parameters in the crossover equation for mixtures of
methane and ethane.
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For the determination of the coefficients P, in Eq. (43) we used the
experimental data of Ellington et al. [57], which appear to be in good
agreement with the P—-p—T-x data of Bespalov et al. [54]. However, the
analytic equation of state, proposed by Haynes et al. [ 53] for mixtures of
methane and ethane, predicts different values for the critical pressures
calculated at T'=T(x) and p = p(x). Therefore, we determined the coef-
ficients P,, P,, and P, in Eq. (43) for the critical pressures and the mixing
coefficients kj‘.“” in Eq. (38) from a fit to both sets of experimental P—p-T-x
data. For the determination of the coefficients T, T,, and T, in Eq. (41)
for the critical temperature the experimental data obtained by Kiselev et al.
[58] were used as initial values. However, Kiselev et al. [58] have reported
critical temperatures for three concentrations only, which is not enough
for a determination of all adjustable coefficients in Eq. (41). Therefore we
determined the coefficients T, together with the background coefficients
,(0) (i=1-5) from a fit to the experimental C, , data of Nagaev et al.
[55] and of Mayrath and Magee [56]. For the determination of the
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coefficients v,, v,, and v, in Eq.(42) for the critical density, we again
started by using the experimental data of Kiselev et al. [58] as initial
values. In the final stage the coefficients in Eqs. (41)-(43) for the critical
parameters and the mixing coefficients k{™ in the crossover equation of
state were determined from a fit to all sets of experimental P-p—T—x and
C, . data simultaneously. The values of the coefficients in Eqs. (41)-(43)
for the critical parameters are presented in Table III. The critical
parameters are shown in Fig. 11 as a functions of x. Equation (41)
reproduces the critical temperatures of Kiselev et al. [ 58] to within 0.03 K,
their critical densities to within 0.01 mol- L', and their critical pressures
to within 0.05 MPa.

As mentioned in the preceding section to represent the coefficients
¢ (8) e (O). A;(0) for j=1,2,3 and f,({) for j>1, we used Eq.(38) with
ki™ #0. For the crossover parameters #({) and A((), the scaling-field
parameters ¢(¢) and d,({), the classical Landau-expansion parameters
au({) and the background coefficient A4,({), linear interpolation formulae
with k{™ =0 appeared to be adequate.

The available experimental C,, . data [55,56] are restricted to tem-
peratures T< 14T (x). To extend the range ot validity of our crossover
equation of state, we supplemented the experimental C,. , data with values
from the NIST14 program developed by Friend and co-workers [ 23-25] at
temperatures up to 7= 16T,(x). This analytic equation cannot describe
the thermodynamic properties of the mixtures in the near-critical region,
but farther away from the critical point it represents experimental specific
heat capacities [56] and experimental speed-of-sound data [62] within

Fig. 11. (a) Critical density of methane + ethane mixtures as a function of concentration.
The filled symbols indicate experimental data obtained by Kiselev et al. [581], the dashed line
corresponds to values calculated with an equation proposed by Rainwater { 10], and the solid
curve represents values calculated with Eq. (42). (b) Critical temperature of methane + ethane
mixtures as a function of concentration. The filled symbols indicate experimental data
obtained by Kiselev et al. [58]. the circles indicate experimental data obtained by Bloomer
et al. [59], the dashed line corresponds to values calculated with an equation proposed by
Rainwater [10], and the solid curve represents values calculated with Eg. (41). (c) Critical
pressure of methane +ethane mixtures as a function of concentration. The filled squares
indicate experimental data obtained by Kiselev et al. [58], the circles indicate experimental
data obtained by Bloomer et al. [59]. the filled circles correspond to values calculated with
an analytical equation proposed by Haynes et al. [53], the dashed line corresponds to values
calculated with equation proposed by Rainwater [10], and the solid curve represents values
calculated with Eq. (43).
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Table III.  Critical-Line Parameters for CH, + C,H,

Temperature (K)

T4 = 190.564
T'2 = 305322
T, =83.206

To= —34.869
Ty= —13.350
Density (mol- L")
pi=10.122
Pl =6.8592
¢, = —0.017090
by = —0.070526
0y = 0.12909

Pressure (MPa-mol-kJ ")
PUYRT!! =2.9028
PRYRT =19191

P, =5624
Py= —7.1191
P, =286

3% [23]. To apply our crossover equation to temperatures larger than
T=14T_.x) we introduced two additional coefficients, ji4({) and ji;({) for
the mixtures. The values for the mixing coefficients k(™' are included in
Table II.

In Fig. 12 we show a comparison of the pressures calculated from the
crossover equation of state with the experimental pressure data of Bespalov
et al. [54] and those of Haynes et al. [53]. As mentioned earlier, the two
data sets correspond to slightly different critical pressures. Our crossover
equation of state essentially amounts to a compromise between the two
data sets.

A comparison with the experimental C, . data of Nagaev et al. [55]
and with those of Mayrath and Magee [56] is presented in Fig. 13. In the
temperature range 0977 (x)< T<14T{x) and density range 0.7p(x) <
p < L.5p.(x), the deviations of the experimental values from the calculated
values are within 5% mostly. However, the data in Ref. [ 56] at p/p. < 0.81
show deviations up to 10%, indicating some differences between the two
data sets.

The paper of Nagaev et al. [56] also includes some experimental
coexistence-curve data which are well represented by our crossover equa-
tion of state as shown in Fig. 14. A comparison with the experimental dew
and bubble-point data obtained by Bloomer et al. [ 59] is shown in Fig. 15.
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Fig. 12. The pressure of methane + ethane mixtures at concentrations x = 0.0986, x = 0.3995,
v=0.84, x=0.31474, x =049783, and x =0.65472 mole fraction of ethane as a function of
temperature. The symbols indicate the experimental data obtained by Bespalov et al. [54]
and by Haynes et al. [53] and the curves represent values calculated with the crossover
model. The solid curves represent values calculated with the crossover equation.

There are systematic deviations between the experimental and the
calculated values in the vapor branch at x=0.1484 and on the liquid
branches at v =0.6998 and x=0.8493. While our crossover equation is
valid in a large temperature range above T (x), it still has a somewhat
limited validity near the phase boundary below T(x). A comparison of our
crossover equation with the experimental vapor-liquid equilibrium data
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Fig. 13. Isochoric specific heat C. . of methane +ethane mixtures at concentrations

x=0.0986, x=0.3995, x=0.84, x=0.31474, x =0.49783, and x=0.65472 mole fraction of
ethane as a function of temperature. The symbols indicate experimental data obtained by
Nagaev et al. [55] and by Mayrath and Magee [56]. The solid curves represent values
calculated with the crossover model and the dashed curves values calculated with NIST14 [24].

obtained by Wichterle and Kobayashi [60] and Davalos et al. [61] is
presented in Figs. 16 and 17. Our crossover equation yields a satisfactory
representation of these vapor-liquid equilibrium data.

More recently, Younglove et al. [62] have reported speed-of-sound
measurements for mixtures of methane and ethane. Most of the experimental
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phase of methane as a function of temperature at
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experimental data obtained by Nagaev et al. [55] and
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Fig. 15. Dew-and bubble-point diagrams at constant
concentration. The symbols indicate the experimental
data obtained by Bloomer et al. [59] [{1) x=0.075,
(2) x=0.1484, (3) x=03, (4) x=04998, (5) x=
0.6998. (6) x =0.8493, and (7) x =0.95 mole fraction of
ethane] and the curves represent values calculated with
the crossover model.
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represents values calculated with the crossover model.
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data are outside the range of validity of our crossover equation, which is
not adequate for densities smaller than 0.6 p (x). A comparison with the
experimental sound velocities of Younglove et al. inside the range of
validity of our crossover equation is shown in Fig. 18. The deviations are
of the order of 6 %.

7. DISCUSSION

Guided by the modern theory of critical phenomena in one-compo-
nent fluids and based on the isomorphism principle for its extension to
fluid mixtures, we have presented a crossover equation for the thermo-
dynamic properties of mixtures of methane and ethane that incorporates
theoretically predicted singular thermodynamic behavior in the vicinity of
the critical line and recovers regular classical thermodynamic behavior far
away from the critical line. The crossover equation is valid in the tem-
perature range 0.97T7.(x)<T<1.6T(x) at p=p.(x) and in the density
range 0.7p(x)<p<15px) at T=T,x). The pressures are well repre-
sented down to 0.97T. at p=p.(x) and down to 0.5 p(x) at T=T(x). In
applying the isomorphism principle we have employed an ordering field 4
where the conjugate thermodynamic variable, serving as the ordering
parameter, is the density at constant chemical potential. In principle we
may consider an ordering field /1 that is a more general function of the
physical fields s, 4, and T. As pointed out by Anisimov et al. [63, 64],
the introduction of a more general ordering field is necessary if we want to
account for crossover from vapor—Iliquid critical behavior to liquid-liquid
critical behavior. Such a more general isomorphism approach may also
potentially lead to a more accurate crossover equation of state for mixtures
like mixtures of methane and ethane which do not exhibit crossover from
vapor-liquid critical behavior to liquid-liquid critical behavior. However, a
crossover equation of state based on such a more general ordering field,
and hence a more general order parameter, has not yet been developed.

APPENDIX A: RELEVANT THERMODYNAMIC DERIVATIVES

Derivatives of Free-Energy Density
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Fig. 18. The speed of sound of methane + ethane mixtures at
constant concentrations as a function of density. The symbols
indicate experimental data obtained by Younglove et al. [62] and
the curves represent values calculated with the crossover model.
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Isochoric specific heat capacity C, . per mole:
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APPENDIX B: CROSSOVER EQUATION OF STATE OF KISELEV
AND SENGERS

An alternative crossover equation of state has been proposed by
Kiselev and Sengers and applied to represent the thermodynamic proper-
ties of methane and ethane in a large range of temperatures and densities
around the critical point [35]. This alternative crossover equation of state
is expressed in terms of parametric variables  and 8 that are defined by the
transformation

t=r(1—5%6% (B1)
4p—d,t=krPOR=F*+"*(rg) (B2)
with
Rig)=1+—L (B3
! go+yq :

Here b*=(y—28)/y(1 —28) and ¢,=0.3 are universal constants, where
y=(2—n)vand f=(3v—y)/2, while g is a system-dependent constant that
is inversely proportional to the so-called Ginzburg number [13,65]. In
terms of these variables the crossover equation for the reduced Helmholtz
free-energy density has the form

5
AA(r, 0y =kr* ~*R*(rg) [a‘[fo((}) + Z c; 7 R™4i(rg) 'P,(())} (B4)
i=1

where %,(0) are universal functions of the parameter ¢ presented in
Table I1I in the article by Kiselev and Sengers [35]. However, in that
article the exponents 4, of the factor R ~7(rg) in Eq. (B4) were incorrectly
identified with the exponents 4, of the factor a r for i>3. Equation (B4)
replaces Eq. (39) and (Al) in Ref. 35, and Eqgs. (A10)~(A13) in Ref 35
should read

d,=4,=vw (BS)
d,=4,=24, (B6)
di=d,=y+p—1, Ady=4,=4,-1/2 (B7)
ds=vws, ds=45—1/2 (B8)

We also note that Fig. 8 in Ref. 35 does not show the isobaric specific-heat
capacity C, of methane but of ethane, as correctly stated in the caption of
this figure.
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The equation of Kiselev and Sengers represents a more phenomeno-
logical approach to deal with the crossover problem. However, being
expressed in parametric variables r and 8 directly, the equation is simpler
for computer programming, since it avoids the iteration associated with
obtaining the solution of the coupled equations (18) and (19) as discussed
by Luettmer-Strathmann et al. [20]. The crossover equation of state of
Kiselev and Sengers, applied to methane and ethane, is valid in a range of
temperatures and densities comparable to that of the crossover equation of
state formulated in the present paper. Hence, an alternative practical cross-
over equation of state for mixtures of methane and ethane may be obtained
by making the system-dependent coefficients in the equation of Kiselev and
Sengers ( dependent as was done by Povodyrev et al. [S1] for the
asymptotic critical behavior of the thermodynamic properties of methane
and ethane.
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