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Crossover Equation of State for the Thermodynamic 
Properties of Mixtures of Methane and Ethane in the 
Critical Region 

A. A. Povodyrev, 1'2 G. X. Jin, 1'3 S. B. Kiselev, 2 and J. V. Sengers 1'4"5 

Receieed October 4, 1995 

We present an equation of state for the thenlaodynamic properties of mixtures 
of methane and ethane in the critical region that incorporates the crossover 
from singular thermodynamic behavior near the locus of vapor liquid critical 
points to regular thermodynamic behavior outside the critical region. The equa- 
tion of state yields a satisfactory representation of the thermodynamic-property 
data Ibr the mixtures in a large range of temperatures and densities. 

KEY WORDS: critical phenomena: equation of state; ethane; methane: plait 
point; thermodynamic properties. 

1. I N T R O D U C T I O N  

Asymptotical ly close to the critical point  the thermodynamic  properties of 
fluids satisfy scaling laws with universal scaling functions that are the same 
as those for the three-dimensional  Ising model [1 -3 ] .  Binary mixtures 
belong to the same universali ty class and have the same expressions for the 
the rmodynamic  properties provided that suitable isomorphic variables are 
used [ 4 - 6 ] .  To extend the description of the properties to a wider region 
a round  the critical point  one needs to incorporate  crossover from Ising-like 
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asymptotic behavior near the critical point to mean-field (van der Waals- 
like) behavior far away from the critical point. Such a crossover equation 
of state has been developed by Chen et al. for one-component fluids [7]  
and extended to mixtures by Jin et al. [8] .  In this paper we adopt an 
improved version of the crossover equation of state proposed by Jin [9]  
and apply it to mixtures of methane and ethane. 

2. ISOMORPHIC FREE-ENERGY DENSITY 

The theory of critical phenomena in one-component fluids can be 
extended to mixtures provided that one uses appropriate isomorphic ther- 
modynamic quantities [4-6, 10]. For this purpose we use here the ther- 
modynamic variables adopted by Jin et al. [8]  as further discussed by 
Anisimov and Sengers [ 11 ]. 

Let U, A, and V be the specific internal energy, Helmholtz free energy 
and volume taken per mole. For one-component fluids the critical cross- 
over behavior of the thermodynamic properties has been specified in terms 
of the Helmholtz free-energy density A / V  as a function of the density 
p = 1/V and the inverse temperature l IT  [7, 12-14]. To extend the theory 
to binary mixtures, we define [8, 11 ] 

~ =  1. ~ =  P P, P2 A =  pA (1) 
R T '  RT" fil = - ~ ,  I"L2 = R T '  R T  

where P is the pressure, IZ, and It2 are the chemical potentials of the two 
components, and R is the molar gas constant. 

The extension of the theory to mixtures is based on the principle that 
a suitably chosen isomorphic free-energy density will have the same form 
as the Helmholtz free-energy density of one-component fluids. One 
possibility is to treat the chemical potential P l of one of the components 
referred to as the solvent as the ordering field and the chemical-potential 
difference / t = i t 2 - p l  as a hidden or irrelevant field. A dimensionless 
isomorphic free-energy density Aiso may then be defined as 

d iso = d - pfix (2) 

so that 

dA~so =c, di"+p~ @ - x p  dp (3) 

where fi = U/V is the energy density, x the mole fraction of the solute, and 

fi =fi2 - i l l  (4) 
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The choice offi~ as the ordering field and fi as the hidden field is not con- 
venient in practice, since in the pure-component limits fi~ or/32 diverges. 
This problem was avoided by Leung and Griffiths [15], who introduced 
an ordering field h and a hidden field ¢ that are related to the "activities" 
e t~, and e ~2. In the form adopted by Jin et al. [8], they are defined by 

1 
h = l n ( e  t~' + #~-'), ¢ 1 + e c~t -j~.,i (5 )  

so that 

fil = h  +ln(1 -~ ) ,  f i2=h + ln  ~ 

A Legendre transformation of the form 

(6) 

yields 

with 

A~,-=hp - f i  (7) 

M~,r= ~ d~" + h dp - w d¢ (8) 

x - ~  
w ~(1 _~)  p (9) 

A~n-and Aiso are related by 

A~w= Ai~ o - p  ln(l - ~ )  (10) 

A~ r is an alternative dimensionless isomorphic free-energy density when 
taken at constant ~. The advantage of the choice of A ~  as the isomorphic 
free-energy density is that the hidden field variable ~ will vary from 0 to 1, 
when the concentration x varies from 0 to 1. Unlike the concentration x, 
the variable ~ will have the same value in two coexisting phases. 

The present formulation of an equation of state for fluid mixtures in 
the critical region is restricted to fluid mixtures for which the critical points 
of the two pure components are connected by a continuous line of 
vapor-liquid critical points. The critical parameters To Pc, and Pc will 
vary along this line of critical points as functions of the concentration x or, 
alternatively, as functions of the variable ~. We find it convenient to intro- 
duce the deviation variables 

T -  T¢(() p - p~(~) 
r , A f t = - -  (11) 

T p~(~) 



912 Povodyrev, Jin, Kiselev, and Sengers 

Equation (8) may then be rewritten as 

dAo~= - O d~ + h d p -  W d¢ 

with 

(12) 

x -  ¢ 0 i a< O=C,/RT~(O, W=~(l-O p+ r d¢ (13) 

At fixed ¢, ,4~,r(r, p, ¢) will be the same singular function of r and p as the 
Helmholtz free-energy density of a one-component fluid [7],  with all 
system-dependent constants depending parametrically on the hidden field 
[8]. From Eqs. (12) and (13) it follows that the composition x is related 
to the variable # by 

p EL acid,,, T de L~--~J~,, {14) 

3. C R O S S O V E R  F R E E - E N E R G Y  D E N S I T Y  

A crossover equation of state for the critical part d~] of a dimen- 
sionless free-energy density ~] = A TJVP~ T has been developed by Chen et 
al. for one-component fluids [7] and extended to mixtures by Jin et al. 
[8]. They start fi'om a classical Landau expansion for Ai], which is then 
transformed or "renormalized" so as to incorporate the effects from long- 
range critical fluctuations. Retaining six terms in the classical Landau 
expansion they obtain for the renormalized free-energy density 

1 ~ 1 1 
AAr(t, M, ~) = ~ tm- ,Y-~ + ~.. u*~(#) A(#) M40~2°~/ + ~. aos(¢) M5~5/2~ "°ll 

+ ~. ao6(¢) M ° ~  ql-/- + ~.. a'4(g) tMa,~-o.o~2q[ U2 

1 t : ,g/  (15)  + ~ a,_,_(~) t2M2.~'-2@q! - 1/2 _ 12 

where t is a temperature-like variable and M is a density-like variable that 
are related to the physical variables v and A/] by 

[aa rl at ] t=c'(Or+c(OI aM J , ,¢ '  ~ tc  

(16) 
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T a b l e  I. Un iversa l  C o n s t a n t s  

v = 0.630 
s 1 = 0.0333 
c~= 2-3v=0.110 
~o = A/v = 0.80952 

~o,, = 2.1 

u* = 0.472 

The coefficients t7(~), and ao.(() in Eq. (15) and c,(:,), cp((), c((), and dl(~) 
in Eq. (16) are system-dependent coefficients which, for mixtures, will 
depend on the variable (, while the coefficient u* in Eq. (15) is a universal 
constant (u* =0.472). The functions J ,  @, ://, "/", and #{" in Eq. (15) are 
rescaling functions that can be expressed in terms of a crossover function 
Y through 

,~-~_ yl:-t/,.)/,o ~ = y-'l~',', ~?/= y~/'" 

V 
¢- = y,o,,- ,/:)/,,), "~ ctaA ( y-~/,o,._ 1 ) 

(17) 

where v, q, and c¢ = 2 -  3v are universal critical exponents that characterize 
the asymptotic critical scaling behavior, while co = A/v (A = 0.51) and co, = 
A~,/v-2.1 are universal critical exponents associated with the leading 
symmetric and asymmetric correction terms [ 2, 16, 17 ]. The values of these 
universal constants are summarized in Table I. 

The crossover function Y in the expressions, Eq. (17), for the rescaling 
functions is to be determined from the set of coupled algebraic equations 

1 - [ 1 - ~ ( ( ) ] Y = t ~ ( ( )  1 +  yt/,o (18) 

h': = t.Y-- + ~ M2ff(~)u*A~'~ /+a°~  S---~) M 3G~A3/: 'I< " °][ 

+ ao6(~) M4~2~/[3/2 
24 

+al4(~)2 tM2J~°gm+a22(~)~ t:j-2q/-1/2 (19) 
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Equations (18) and (19) are those recently proposed by Jin et al. [9, 18]. 
They differ from those employed earlier by our research group [7, 8, 12] in 
two respects, namely, in the choice of the exponent coc in Eq. (18) and in 
the number of terms retained in Eq. (19) for x 2. While in the earlier work 
the renormalized expansion Eq. (15) for zl~],, based on a six-term Landau 
expansion was introduced, only the first two terms in the corresponding 
expansion, Eq. (19), for ~.2 were retained. Equation (19) is more fully con- 
sistent with the number of terms retained in the Landau expansion for the 
free-energy density. The parameter tc is closely related to the inverse 
correlation length [ 19] and serves as a measure of the distance from the 
critical point [20]. In the asymptotic critical limit 

r= j (20) 

and one recovers from Eq. (15) the asymptotic critical power laws with 
leading Wegner correction terms [21 ]. The classical limit corresponds to 

lim Y =  1 (21) 
, ' f i x  ~ 0 

so that Eq. (15) reduces to the classical Landau expansion. 
The exponent co~ in Eq. (18) is an exponent that accounts for the rate 

at which the final crossover to the classical limit occurs. The higher the 
value of o)c, the faster we reach the classical limit, i.e., the faster Y will go 
to unity when we move away from the critical point. From an analysis of 
the spherical model, Nicoll and Bhattacharjee [22] found ~o c = 2, and this 
is the value that has been adopted in our previous work [7, 8, 12, 19]. 
However, higher-order terms in the Landau expansion may contribute to 
the actual crossover behavior and we found that an effective value 3/2 for 
the exponent coc yielded empirically an increased range of validity of the 
crossover equation of state [9, 14]. 

The actual dimensionless free energy density Ai] is related to A,4 r, 
given by Eq. (15), by a transformation of the form [ 7, 8 ] 

[aA  l (22) 

Taking into account the different ways in which A and ,] have been made 
dimensionless, we obtain for the effective Helmholtz free-energy density 

P¢(~) 
A~,-(~, p, ~)=  

RT¢(~) 
[AA(r,A~,~)+Ao(v,~)+pho(~,~) ] (23) 
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where Ao(r, ~) and ho(r,O represent analytic noncritical contributions, 
which in practice are represented by truncated Taylor series expansions: 

4 1 7 

Ao(r, ~)= ~ Aj(~') rJ, ho(r, ~)=p--~ ~ ~s(O rJ (24) 
j=O P c  b j = 0  

with system-dependent coefficients Aj(~') and Pj(O. Since A-p(OA/ap)~ = 

- P ,  it follows that Ao(~)- - 1 .  
Equation (23) yields a fundamental equation for the effective Helmholtz 

free-energy density from which all other thermodynamic properties can 
be calculated. Some of the relevant thermodynamic derivatives are given 
in Appendix A. In this paper we apply the equation of state, given by 
Eq. (23), first to methane and to ethane and then to mixtures of methane 
(component 1) and ethane (component 2). 

4. APPLICATION TO ONE-COMPONENT FLUIDS 

The crossover equation of state for the one-component fluids are 
obtained from Eq. (23) by taking ~ = 0  (methane) and ~=  1 (ethane). To 
specify the crossover equation of state we need the critical parameters T~c i~, 

li~ p l i )  Pc , and _~ , where superscript i = I corresponds to methane and i =  2 to 
ethane. The values of the critical parameters are either obtained from direct 
experimental observations or deduced from an asymptotic analysis of 
experimental thermodynamic data very close to the critical point. 

The crossover parameters 9 m and A ~, the scaling field parameters c~/~, 
"~ of the Landau expansion, and the c '~i' c "~ and d~/~ the coefficients a j !  ,. p , 

background parameters/~}~ are to be determined from a fit of the cross- 
over equation of state to experimental P - p - T  data for methane and ethane. 
The coefficients fiy~ for j>~ 2 determine background contributions to the 
caloric properties and can be obtained from fits to experimental specific 
heat capacities or speed-of-sound data. The coefficients fi~sl and fi~[~ are 
related to the zero points of entropy and energy of the two fluid com- 
ponents and they do not enter into the calculation of experimentally 
observable thermodynamic properties like pressures and specific heat 
capacities. However, for the mixtures fio(O and fi~(~) are no longer 
arbitrary, since they are related to the entropy of mixing and energy of 
mixing as further discussed in Section 5. 

Scientists at the National Institute of Standards and Technology have 
developed a computer program for the calculation of the thermodynamic 
properties of mixtures, including mixtures of methane and ethane [23], 
referred to as NIST14 [24, 25]. This computer program is based on a 
classical principle of extended corresponding states and, hence, does not 
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Fig. 1. Range of validity of the crossover equation of 
state ['or methane. ( [] ) Experimental P p-T data [29 31 ]: 
(0)  Experimental Cv data [32-34] and Cv values 
calculated from the global equation [27]. 

at tempt to include the singular behavior of the thermodynamic properties 
of fluids near the critical point. However, NIST14 does yield a satisfactory 
representation of the thermodynamic properties of mixtures of methane 
and ethane away from the critical locus of the mixture. We have, therefore, 
made an at tempt to make our crossover equation of state consistent with 
the values calculated from NIS TI4  outside the critical region. 

4.1. Methane 

Jin et al. [26] have applied an earlier simpler version of our crossover 
equation of state to methane to be used in conjunction with a global equa- 
tion of state developed for methane by Setzmann and Wagner [27].  
However, in order to develop a theoretically based equation of state for 
mixtures in the critical region, we want to start from a single crossover 
equation of state for the two pure-fluid components  applicable in as large 
a range of temperatures and densities as possible. Hence we rerepresent the 
thermodynamic properties of methane in terms of the crossover equation of 
state formulated in this paper. For the critical parameters of methane we 
continued to use the values obtained by Kleinrahm and Wagner [28] and 
adopted by Setzmann and Wagner [27] and by Jin et al. [26]  

T~ ~1 = 190.564 K, PIcll  = 4.5992 MPa,  ~'~"l*l _- 10.122 mol .  L - t  (25) 
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The system-dependent coefficients, except for /2~ '1, were determined 
by fitting the crossover equation of state to experimental P - p - T  data 
reported by Wagner and co-workers [29, 30] and by Trappeniers et al. 
[ 31]. With estimated errors in pressure, temperature and density as small 
ere=5 x 10 -5 MPa, a t =  l x  10 - 3  K, and ap=0.15 kg.m -3 [26], we find 
that the equation represents the experimental data with a reduced chi- 
square of 3.57 in a range of temperatures and densities bounded by 

r + 1.2A~ 2 < 0.5, r > -0.07 (26) 

This range of temperatures and densities is shown in Fig. 1. Percentage 
deviations of the experimental pressures from the calculated pressures are 
shown in Fig. 2; they are generally within 0.15 % inside the region specified 
above except near the boundary at higher densities, where the deviations 
increase up to 0.35 %. 

The coefficients/t} t) (j~> 3) account for background contributions to 
the caloric properties and they were determined by fitting the crossover 
equation to experimental specific heat capacities and speed-of-sound data. 
Specifically, we used experimental Cv data obtained by Younglove [32] as 
corrected by Roder [33], experimental Cv data obtained by Anisimov et 
al. [34] with temperatures shifted by 0.114 K as discussed by Kiselev and 
Sengers [ 35 ], and experimental speed-of-sound data obtained by Gammon 
and Douslin [36], by Straty [37], and by Trusler and Zazari [38]. In 
addition we used Cv values calculated from the global equation [27] at 

0.50  

0 .25  

o 0.00 
a.,,a 

Q~ -0 .25  
cb ~o° 

- 0 . 5 0  
50 160 i~o z60 z~0 

p, k g . m  -s 

Fig. 2. Percentage deviations of the experinaental 
pressures reported by Wagner and co-workers [29, 30] 
and by Trappeniers and co-workers [31 ] for methane from 
values calculated with the crossover equation of state. 
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t empera tu re s  up  to 375 K in the far a w a y  region. T h e  C v  da ta  are  represented 

wi th  a s t a n d a r d  d e v i a t i o n  o f  2 . 5 %  and  the  s p e e d - o f - s o u n d  d a t a  wi th  a 

s t a n d a r d  d e v i a t i o n  o f  1.5 % ,  wh ich  is w i th in  the  a c c u r a c y  o f  the  e x p e r i m e n -  

tal  da ta .  T h e  va lues  o f  the  s y s t e m - d e p e n d e n t  coeff ic ients  in o u r  c r o s s o v e r  

e q u a t i o n  o f  s ta te  a re  p r e sen t ed  in T a b l e  II. P e r c e n t a g e  d e v i a t i o n s  o f  the  

e x p e r i m e n t a l  C v  d a t a  f rom the  ca l cu l a t ed  va lues  o f  C v  are  s h o w n  in Fig.  3. 

T h e  coe f f i c i en t / i~  ~ was  a rb i t r a r i l y  set to  zero.  

T h e  ac tua l  va lues  for the  speed  of  s o u n d  o f  m e t h a n e  a re  s h o w n  in 

Fig. 4. F i g u r e  4 con f i rms  tha t  o u r  c r o s s o v e r  e q u a t i o n  o f  s ta te  yields a g o o d  

r e p r e s e n t a t i o n  o f  the  speed  o f  s o u n d  in a la rge  r ange  o f  t e m p e r a t u r e s .  In 

Fig.  5 we s h o w  a c o m p a r i s o n  of  o u r  c r o s s o v e r  e q u a t i o n  wi th  e x p e r i m e n t a l  

Table II. System-Dependent Constants 

k4~ k~21 
Parameter (methane) (ethane) k ~" 

Crossover 
ff 0.3550 0.3695 0 
A 0.8793 1.0000 0 

Scaling-field 
c t 1.2827 1.5233 -0.763 
cp 2.5899 2.4897 0.417 
c - 0.0940 - 0.09919 0 
dl -0.7586 -0.8601 0 

Classical 
a,5 0.1873 0.2565 0 
ao6 0.5337 0.7511 0 
al4 0.3752 0.3648 0 
a_~z 1.1540 1.187 0 

Equation-of-state background 
,'t I - 4.9787 - 5.4366 9.088 
,4 ~ 5.9455 7.0270 24.227 
/] 3 3.3181 6.9056 0.713 
-'44 -5.214 - 11.758 0 

Caloric background 
fil 0 -2.16 1.747 
fi2 - 12.924 - 19.23 3.11 
1i3 -9.0926 - 18.59 34.358 
fi4 6.3061 10.45 - 26.523 
/i 5 - 14.218 - 33.58 89.72 
fin 0 0 42.457 
fi7 0 0 - 186.4 

Molar mass (g. mol- i )  16.043 30.069 
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Ce da t a  repor ted  by Kas teren  and Zeldenrus t  [ 39 ]  and by Jones et al. 
[ 4 0 ] ,  which were not  used in the de te rmina t ion  of  the values of  the system- 
dependen t  cons tants  for methane.  

In Fig. 6 we show the densities and  sa tura t ion  pressures of  the coexist- 
ing vapor  and liquid phases below the critical t empera ture  compared  with 
the exper imenta l  da t a  repor ted  by Kle in rahm ahd Wagner  [28] ,  which 
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Fig. 4. Sound velocity of ethane at various temperatures as a func- 
tion of density. The symbols indicate experimental data [36-38] and 
the curves represent values calculated with the crossover model. 
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were not used in the fits of the crossover equation. The figure confirms that 
below the critical temperature, the crossover equation yields a satisfactory 
representation of the data for T ~< 175 K, i.e., for z > -0.07 as specified in 
Eq. (26). Below 175 K there are some systematic deviations for the vapor 
pressures and liquid densities. 

An alternative, more phenomenological crossover equation of state for 
methane and ethane has been proposed by Kiselev and Sengers [35 ]. This 
alternative crossover equation of state is discussed in Appendix B and its 
range of validity is comparable to the range of validity, Eq. (26), of the. 
crossover equation formulated in the present paper. The crossover equation 
of Kiselev and Sengers and our crossover equation represent the 
experimental P - p - T  data with similar accuracy. Our crossover equation 
yields a good representation of the isochoric specific heat calculated from 
the global equation of Setzmann and Wagner [27] at temperatures farther 
away from T¢ up to T=  375 K, but the crossover equation of Kiselev and 
Sengers is in better agreement with experimental Cv data of Anisimov et al. 
[34] very close to To. In Fig. 7 we have plotted Cp and Cv of methane as 
a function of temperature at p = Pc as calculated from the crossover equa- 
tion presented in this paper, from the earlier crossover equation of Jin et 
al. [26] and from the crossover equation of Kiselev and Sengers [35]. Our 
crossover equation and the earlier crossover equation of Jin et al. [26] 
yield essentially identical results. The difference between the values of the 
specific heat capacities as calculated from our crossover equation and that 
of Kiselev and Sengers [35] is probably a measure of the absolute 
accuracy with which the specific heat capacities of methane near the critical 
point can be calculated. 

4.2. Ethane 

The crossover equation of state described in this paper was originally 
formulated by Jin and applied to ethane [9, 18]. The values adopted for 
the critical parameters of ethane are [ 18 ] 

TIc-'1=305.322 K, Pc=4.8718 MPa, p~c21=6.8592mol.L -I (27) 

The values of a I-'~, A ~2~, ~-'~ ~,_~ c~2~, d~lZ~ 12~ ~12~ c, , cl, , ajk , and Aj  were obtained by 
fitting the crossover equation of state to experimental P - p - T  data reported 
by Douslin and Harrison [41]. The values ~ ~~2~ oi #j were determined from a 
fit to experimental Cv data reported by Shmakov [42]. A comparison of 
the crossover equation with the experimental P - p - T  and Cv data for 
ethane will be presented elsewhere [ 18]. Here we show in Fig. 8 only the 
densities and saturation pressures of the coexisting vapor and liquid phases 
below the critical temperature. This figure is to be compared with Fig. 6 for 
methane. 
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The experimental Cv data of Shmakov [42] are limited to tem- 
peratures within [rl <0.1. We found that by changing the caloric back- 
ground parameters /7~. -'1 we could get an equally good representation of 
these experimental Cv data while obtaining better consistency with the 
values for the specific heat capacity calculated with NIST14 farther away 
from the critical temperature as indicated in Fig. 9. The values adopted for 
the system-dependent constants for ethane are included in Table II. The 
coefficient fi~t -'~ :~ 0 was selected by a procedure discussed in the next sec- 
tion. In terms of reduced temperatures and densities the range of validity 
of the crossover equation for ethane is approximately the same as the range 
for methane given by Eq. (26). 

5. APPLICATION TO MIXTURES 

In order to apply the crossover equation of state to mixtures we need 
the critical parameters T¢(~), Pc(if), and Pc(~) as a function of the field 
variable ~. However, the actual experimental information for these 
parameters is avaiable only as a function of the concentration x. The 
variable x is to be converted into the variable ~ by using Eq.(14). 
However, for this purpose we need Ae~, which in turn depends on Tc(~), 
Pc((), and Pc((). Although it is possible to go through this procedure 
[9, 18], the procedure becomes much simpler if the field variable ~ is 
selected such that at the critical locus it becomes numerically equal to the 
mole fraction x: 

x = ~  for T=T~, P=P~, p=pc (28) 

We refer to this condition as the critical-line condition (CLC) and it has been 
introduced by many investigators [8, 10, 11,44-52]. The experimentally 
accessible thermodynamic properties of the mixture will be independent of 
the zero point of the entropy and energy selected for the two pure-fluid 
components and, hence, independent of the coefficient fi~l~, fi~o21, fi~,l, 
and fi~,2). However, the hidden field ~ and the ordering field h will actually 
depend on the choices adopted for the zero points of entropy and energy 
as follows from Eq. (5). We can use the freedom of choice of the zero 
points in part in an attempt to satisfy the CLC as required by Eq. (28). 
Nevertheless, for the variables adopted in this paper, it is impossible to 
satisfy the CLC exactly and it introduces an approximation as discussed by 
Anisimov and Sengers 1-11]. For mixtures of carbon dioxide and ethane 
the CLC has been shown to be a good approximation 19, 18] and we 
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adopt the CLC for mixtures of methane and ethane also. Substitution of 
Eq. (14) with Eq. (28) yields for the CLC 

( ( 1 - ( )  
x = ( - - G ( ( )  (29) 

Pc(() R 

with 

G(() = [2o(~) + f/o(~)] - -  
d (PJTc )  Pc(() dp~ ~ ~ P~(~) dPo 

de pc(C) T~(¢) d~" l~o(~) + T ~  d( 

Pet() dT~ 
- [A, ( ( )  + f i , ( ( ) ]  T ~ )  d~ (30) 

We note that Eq. (30) corrects Eq. (4.12) in Ref. 8. The CLC requires that 

G ( ( ) = 0  for T=T~, P=Pc, P=Pc (31) 

To implement the CLC we find it convenient to define 

Po(() = Z~ (~) Po(() (32) 

where Zc ( ( )=  Pc(f)/P~(()RTc((). Equation (30) then reduces to 

d(PdTc) dfi'o Pc(() ate [.~,(()+p~(()] (33) 
G(~) = Rpc(() d( T~ (() d( d( 

The CLC condition is satisfied if we demand that 

dffo(() Pc(() dTcI2~(~)+fil(~) 1 
el Rp~(() T~(() d( 

1 d(Pc/T c) 
4 (34) Rpc(() d~ 

The expressions for the pressure, the specific heat capacities and the speed 
of sound of the mixture do not depend on fi~(() directly, but only on its 
first and second derivatives with respect to (. These derivatives can be 
calculated readily from Eq. (34). However, to calculate the excess enthalpy, 
one needs p;(~) which is to be obtained by integrating Eq. (34), as was 
done by Jin et al. [ 8] for mixtures of carbon dioxide and ethane. 

In principle, there are a number of different ways in which one can 
implement the CLC as expressed by Eq. (31). In applying a scaled cross- 
over equation of state to mixtures of carbon dioxide and ethane, Jin et al. 
[8] took i l l ( ( ) = - ' 4 1 ( ( )  and then calculated r id()  from Eq. (34). The 
CLC as applied here is similar to the way the CLC was previously 
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implemented by Povodyrev et al. for a representation of the thermo- 
dynamic properties of methane and ethane in terms of a parametric scaled 
equation of state for the asymptotic critical thermodynamic behavior [ 51 ]. 
The internal energy density ~ = U/V and the entropy density g = S/V on the 
critical line are given by 

C6(x) = -Pc(x)[  A,(x) +fi , (x) ]  (35) 

^ , , YG(x) Pc(x) 
s 3 x ) = T c ( x ) + ~ - P c ( x ) R [ f i ' o ( X ) + x l n x + ( 1 - x ) I n ( 1 - x )  ] (36) 

From Eq. (35) we see that the choice fi, = - , 4 ~ ( ( )  implies that t ic=0 
everywhere along the critical locus [8].  In the present approach fi~(() is 
left free but r id()  and, hence, ,f~(x) is restricted by the solution of Eq. (34). 

To specify the crossover equation for Ja r  of the mixture, we also need 
the system-dependent parameters ~((), A((), c,((), c/,((), c((), dl((), ajk((), 
,4j((), and fij(() for j>~3, to be designated kj((), as a function of the 
variable (. In the case of mixtures of carbon dioxide and ethane, it was 
possible to interpolate all system-dependent ke(() linearly between k) l~ for 
( - - 0  and k} 21 for ( =  l, except for the background coefficient fi2(() [9, 18]. 
However, methane and ethane have significantly different critical tem- 
peratures and a simple linear interpolation will not be adequate. Following 
the earlier work of Kiselev and co-workers [50, 51], we assume that kj(() 
will depend on ( primarily through the isomorphic critical compressibility 
factor Zc((), which is written in the form 

Z¢(() = ( 1 - () ZIc 1) -~- ~Z(c 2) -~- AZc(~) (37) 

where Z (') and Z (-') are the critical compressibility factors of methane and c - -c  
ethane, respectively. We then represent the system-dependent coefficients 
kj(() in the crossover equation of state by interpolation functions of the form 

kj(O = (1 - ¢) kJ ') + Ck} 2) + k~. m) Z1Zc(¢) (38) 

w h e r e  k) m) are mixing coefficients to be determined by fits to available 
thermodynamic property data for the mixtures. 

As mentioned earlier, the coefficient rio(() is determined implicitly by 
Eqs. (32) and (34). In the equation for fil(~) 

f i l (~ ')  ~- ( l  - -  ~ ' ) /~ I )  =b" ~fi]2)oc film) ,dZc(~" ) (39) 

we arbitrarily took f i ] l )=  0 for methane, but the coefficient fi~2) for ethane 
and the mixing coefficient fi~'~ were left as adjustable parameters. 
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6. M I X T U R E S  OF M E T H A N E  A N D  E T H A N E  

We have applied our scaled crossover equation for the effective 
isomorphic Hdmholtz free-energy density to represent experimental thermo- 
dynamic-property data for mixtures of methane and ethane. To determine 
the system-dependent parameters in the crossover equation we have used 
the following experimental information: 

(i) experimental P-p-T-x  data obtained by Haynes et al. [-53] for 
three concentrations (0.31474, 0.49783, and 0.65472 mole frac-  
tions of ethane); 

(ii) experimental P-p-T-x  data obtained by Bespalov et al. [54] for 
three concentrations (0.0986, 0.3995, and 0.84 mole fractions of 
ethane); 

(iii) experimental specific heat capacities obtained by Nagaev et al. 
[55] for three concentrations (0.0986, 0.3995, and 0.84 mole 
fractions of ethane); and 

(iv) experimental specific heat capacities obtained by Mayrath and 
Magee [56] for three concentrations (0.31474, 0.49783, and 
0.65472 mole fractions of ethane). 

Furthermore, to extend the range of validity of the crossover equation 
for mixtures to higher temperatures we have supplemented the experimental 
Cv, ~,. data with Cv..,. values calculated from NIST14 [24]. The range of tem- 
peratures and densities of the data used in the analysis is shown in Fig. 10. 

We also need equations for the critical temperature T~(~), the critical 
density p~(~), and the critical pressure Pc(~) as functions of the hidden field 
~. Since along the critical line ~=x,  the quantities T~(~), p~(~), and P~(~) 
depend on ( in the same way as on x, it follows that 

T,,(~) = To(x), Pc(~) = Pc(X), Pc(~) = P~(x) (40) 

In practice, we represent the critical parameters of the mixtures by polyno- 
mials of the form [ 8 ] 

1 2 1  . Tc(x)=Tl~t~(1-x)+Tc . x + ( T l + T 2 x + T 3 x 2 ) x ( 1 - x )  (41) 

1 I 1 
p~j~(1--x)+~-72~x+(vl+v2x+v3x-)x(l  x) (42) 

Pc(X) 

Pc(x) P~'~ pI2~ 
RTc(x ) -  R - -~  ( 1 -  x) + ~ x + c + P ,x  + P3x2) x( - x) (43) 

where x is the concentration of ethane and where -c7"~, Pc"~, and Pc"~ are the 
critical parameters of methane (i = 1) and ethane ( i= 2). 
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For the determination of the coefficients Pi in Eq. (43) we used the 
experimental data of Ellington et al. [57], which appear to be in good 
agreement with the P-p-T-x data of Bespalov et al. [54]. However, the 
analytic equation of state, proposed by Haynes et al. [53] for mixtures of 
methane and ethane, predicts different values for the critical pressures 
calculated at T =  To(x) and p = p~(x). Therefore, we determined the coef- 
ficients P . ,  P2, and P3 in Eq. (43) for the critical pressures and the mixing 
coefficients kJ. '~1 in Eq. (38) from a fit to both sets of experimental P-p-T-x 
data. For the determination of the coefficients T,, T,, and T3 in Eq. (41) 
for the critical temperature the experimental data obtained by Kiselev et al. 
[58] were used as initial values. However, Kiselev et al. [58] have reported 
critical temperatures for three concentrations only, which is not enough 
for a determination of all adjustable coefficients in Eq. (41). Therefore we 
determined the coefficients Ti together with the background coefficients 
fi~(~) ( i=  1-5) from a fit to the experimental Cv.,,. data of Nagaev et al. 
[55] and of Mayrath and Magee [56]. For the determination of the 
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coefficients v~, /)2, and /)~ in Eq. (42)  for the critical density, we again 
started by using the experimental data of  Kiselev et al, [ 58 ]  as initial 
values. In the final stage the coefficients in Eqs. (41)-(43) for the critical 
parameters  and the mixing coefficients k) m~ in the crossover equation of 
state were determined from a fit to all sets of  experimental P-p -T -x  and 
Cv..,- data simultaneously. The values of  the coefficients in Eqs. (41)-(43) 
for the critical parameters are presented in Table III. The critical 
parameters are shown in Fig. 11 as a functions of x. Equation (41) 
reproduces the critical temperatures of  Kiselev et al. [ 58 ] to within 0.03 K, 
their critical densities to within 0.01 mol .  L - J ,  and their critical pressures 
to within 0.05 MPa. 

As mentioned in the preceding section to represent the coefficients 
c,(~'), c,,(~), A.i((~) for j =  1,2, 3 and fij(~) forj~> 1, we used Eq. ( 3 8 ) w i t h  
k~ m~ 4=0. For  the crossover parameters LT(~) and A((,), the scaling-field 
parameters  c(~) and d~((), the classical Landau-expansion parameters 
~(/k(() and the background coefficient ,~4(~), linear interpolation formulae 
with k.~m~ = 0 appeared to be adequate. 

The available experimental Cv.., data [55, 56] are restricted to tem- 
peratures T~< 1.4To(x). To extend the range ot validity of  our crossover 
equat ion of state, we supplemented the experimental Cv..,. data with values 
from the NIST14 program developed by Friend and co-workers [23-25 ] at 
temperatures up to T =  1.6To(x). This analytic equation cannot  describe 
the thermodynamic  properties of  the mixtures in the near-critical region, 
but farther away from the critical point it represents experimental specific 
heat capacities [56]  and experimental speed-of-sound data [62]  within 

Fig. 11. (a) Critical density of methane +ethane mixtures as a function of concentration. 
The filled symbols indicate experimental data obtained by Kiselev et al. [58], the dashed line 
corresponds to values calculated with an equation proposed by Rainwater [ 10], and the solid 
curve represents values calculated with Eq. (42). (b) Critical temperature of methane + ethane 
mixtures as a function of concentration. The filled symbols indicate experimental data 
obtained by Kiselev et al. [58], the circles indicate experimental data obtained by Bloomer 
et al. [59], tile dashed line corresponds to values calculated with an equation proposed by 
Rainwater [ 10], and tile solid curve represents values calculated with Eq. (41). (c) Critical 
pressure of methane +ethane mixtures as a function of concentration. The filled squares 
indicate experimental data obtained by Kiselev et al. [58], the circles indicate experimental 
data obtained by Bloomer et al. [59], the filled circles correspond to values calculated with 
an analytical equation proposed by Haynes et al. [53], the dashed line corresponds to values 
calculated with equation proposed by Rainwater [ 10], and the solid curve represents values 
calculated with Eq. (43}. 
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T a b l e  I l L  C r i t i c a l - L i n e  P a r a m e t e r s  for  C H  4 - k - C , H 6  

T e m p e r a t u r e  ( K )  

T ~ U =  190.564 

T~ -'~ = 305.322 

Ti  = 83 .206 

T ,  = - 34.869 

T3 = - -  13.350 

D e n s i t y  ( m o l .  L -  i ) 

p 1 1 1 = 1 0 . 1 2 2  

p~2~ = 6.8592 

v l = - 0 .017090  

v 2 = - 0 . 0 7 0 5 2 6  

i, 3 = 0 .12909  

P r e s s u r e  ( M P a .  t o o l .  kJ - i )  

Pi t ~/RT~ 1~ = 2.9028 

P~"~/RT~2~= 1.9191 

P I = 5 .624 

P 2 =  - 7 . 1 1 9 1  

P3 = 2.786 

3% [23]. To apply our crossover equation to temperatures larger than 
T= 1.4T~(x) we introduced two additional coefficients, P6(~) and PT(~) for 
the mixtures. The values for the mixing coefficients k) m~ are included in 
Table II. 

In Fig. 12 we show a comparison of the pressures calculated from the 
crossover equation of state with the experimental pressure data of Bespalov 
et al. [54] and those of Haynes et al. [53]. As mentioned earlier, the two 
data sets correspond to slightly different critical pressures. Our crossover 
equation of state essentially amounts to a compromise between the two 
data sets. 

A comparison with the experimental C,.~,. data of Nagaev et al. [55 ] 
and with those of Mayrath and Magee [56] is presented in Fig. 13. In the 
temperature range 0.97To(x)~< T~< 1.4T¢(x) and density range 0.7p~(x)<~ 
p ~< 1.5p~(x), the deviations of the experimental values from the calculated 
values are within 5 % mostly. However, the data in Ref. [56] at P/Pc <<, 0.81 
show deviations up to 10%, indicating some differences between the two 
data sets. 

The paper of Nagaev et al. [56] also includes some experimental 
coexistence-curve data which are well represented by our crossover equa- 
tion of state as shown in Fig. 14. A comparison with the experimental dew 
and bubble-point data obtained by Bloomer et al. [59] is shown in Fig. 15. 
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Fig. 12. Tile pressure of methane + ethane mixtures at concentrations x = 0.0986, x = 0.3995, 
x = 0.84, x = 0.31474, x =  0.49783, and x =0.65472 mole fraction of ethane as a function of 
temperature. The symbols indicate tile experimental data obtained by Bespalov et al. [54] 
and by Haynes et al. [53] and the curves represent values calculated with the crossover 
model. The solid curves represent values calculated with the crossover equation. 

T h e r e  are  sys temat ic  dev ia t ions  be tween  the  expe r imen ta l  and  the  

ca l cu l a t ed  va lues  in the  v a p o r  b r a n c h  at x = 0 . 1 4 8 4  and on the l iquid  

b r a n c h e s  at x = 0 . 6 9 9 8  and  x = 0.8493. Whi l e  ou r  c ros sove r  e q u a t i o n  is 

va l id  in a large  t e m p e r a t u r e  r ange  a b o v e  To(x), it still has a s o m e w h a t  

l imi ted  va l id i ty  nea r  the phase  b o u n d a r y  be low  Tc(xl. A c o m p a r i s o n  of  ou r  

c r o s s o v e r  e q u a t i o n  wi th  the  e x p e r i m e n t a l  v a p o r - l i q u i d  equ i l i b r i um d a t a  
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Fig. 13. Isochoric specific heat C v ,  of methane+ethane  mixtures at concentrations 
x=0.0986, x=0.3995, x=0.84,  x~0.31474, x=0.49783, and x=0.65472 mole fraction of 
ethane as a function of temperature. The symbols indicate experimental data obtained by 
Nagaev et al. [55] and by Mayrath and Magee [56]. The solid curves represent values 
calculated with the crossover model and the dashed curves values calculated with NIST14 [24]. 

obtained by Wichterle and Kobayashi [60] and Davalos et al. [61] is 
presented in Figs. 16 and 17. Our crossover equation yields a satisfactory 
representation of these vapor-liquid equilibrium data. 

More recently, Younglove et al. [62] have reported speed-of-sound 
measurements for mixtures of methane and ethane. Most of the experimental 
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experimental data obtained by Nagaev et al. [55] and 
the curves represents values calculated with the cross- 
over model. 
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Fig. 15. Dew-and bubble-point diagrams at constant 
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(2) x=0.1484, (3) x=0 .3 ,  (4) x=0.4998, (5) x =  
0.6998, (6) x = 0.8493, and (7) x = 0.95 mole fraction of 
ethane] and the curves represent values calculated with 
the crossover model. 
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and (7) T =  199.92 K] and the curves represent values 
calculated with the crossover model. 
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represents values calculated with the crossover model. 
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data are outside the range of validity of our crossover equation, which is 
not adequate for densities smaller than 0.6 pc(x). A comparison with the 
experimental sound velocities of Younglove et al. inside the range of 
validity of our crossover equation is shown in Fig. 18. The deviations are 
of the order of 6 %. 

7. DISCUSSION 

Guided by the modern theory of critical phenomena in one-compo- 
nent fluids and based on the isomorphism principle for its extension to 
fluid mixtures, we have presented a crossover equation for the thermo- 
dynamic properties of mixtures of methane and ethane that incorporates 
theoretically predicted singular thermodynamic behavior in the vicinity of 
the critical line and recovers regular classical thermodynamic behavior far 
away from the critical line. The crossover equation is valid in the tem- 
perature range 0.97Tc(x)<~T<~ 1.6To(x) at p=pc(x) and in the density 
range 0.7pc(x)<~p~< 1.5pc(x) at T =  To(x). The pressures are well repre- 
sented down to 0.9To at p-=-pc(x) and down to 0.5 pc(x) at T=Tc(x). In 
applying the isomorphism principle we have employed an ordering field h 
where the conjugate thermodynamic variable, serving as the ordering 
parameter, is the density at constant chemical potential. In principle we 
may consider an ordering field h that is a more general function of the 
physical fields its,/-t2, and 7". As pointed out by Anisimov et al. [63, 64], 
the introduction of a more general ordering field is necessary if we want to 
account for crossover from vapor--liquid critical behavior to liquid-liquid 
critical behavior. Such a more general isomorphism approach may also 
potentially lead to a more accurate crossover equation of state for mixtures 
like mixtures of methane and ethane which do not exhibit crossover from 
vapor-liquid critical behavior to liquid-liquid critical behavior. However, a 
crossover equation of state based on such a more general ordering field, 
and hence a more general order parameter, has not yet been developed. 

APPENDIX A: RELEVANT T H E R M O D Y N A M I C  DERIVATIVES 

Derivatives of Free-Energy Density 

l l 

[a3~rl [a3.~r] 

840t17/4-14 
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Fig. 18. The speed of sound of methane+ethane mixtures at 
constant concentrations as a function of density. The symbols 
indicate experimental data obtained by Younglove et al. [62] and 
the curves represent values calculated with the crossover model. 
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with 

[a24~7] [ O2A/lr] (~-, 
0~-fJ"c =c~(#) aM2 J,.c 

OA# Or = c,,(g,) c,(~) l -~ - -  ~ -  c((.) \[ Ot OMJ 

_[o~A~ l [o:@ )le-, 
L at=-~--J~.~L-~-],.JJ 

- c~,(C) d,(C) ~ O -I 
aM- J,.¢ 

-g~-r2j~.c =c~(O I _ -~ - '  J ,  ~ Q- '  - 2c,(¢) c,,(~)a,(,.;) 

#a~-~ ([o2~Q "- 
x ( b 7 ~ -  c(#) \L b-TU~J 

[ a".a#rl a--Z1~rl 
-L-Nr-- jM, c[ OM'- j,.¢)} 0 - '  

+~#(c,) a~I~) [_ aM2 j,.~ 

= i - c(C) o ~ J  - c~-(¢) L o P  J g. ~ L OM=VzY-"-J ,. 

(A3) 

(A4) 

(A5) 

(A6) 

Derived Thermodynamic Quantities 

Pressure P and its derivatives: 

[ 03.fr] P P = p  -3odr ,  p, ¢) 
R'--T = LOP-p/~.~ 

1 0P 
RT[O-T]p..=/~ [O/~] O/~ . . -<L~J, , . , - [  ,.¢ 
I [ OP] Ot ~ OP Ox 0¢ 

(A7} 

(A8) 
p,T 

(A9) 
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Isochoric specific heat capacity Cv..,. per mole: 

pCv..,. T~(¢) [ 0~Af] 
R T'- Or- J/,,¢ 

+ T m  

(A10) 

Isobaric specific heat capacity Ce..,. per mole: 

{ [ 69/5] "~-" 1 [a/~] -' P ( C p ' x -  Cv ") 1O+ T 
R = arJp..,.J p ~pp r,.,- 

(All) 

Speed of sound: 

Ws = ~PP T..,- C,..,.~ (A12) 

Derivatives of the concentration x: 

lax] = 1 _ 1 ( 1 _ 2 ~ ) [ ~ ]  1 ~(1 _~) [3-'A~r] (A13) 
,,.~ p , .T--~ k 0c-' J , .~  

T2[Ox] 1 ~O'-A~rr l dTc 

L Or- Jp, c+-T-~'-~-[ Or Jp.¢) 
(A14) 

[O@] =1  #(1 _#) {~ [0Aerf ] O2Ae,v 
7",(, P L o~ Jp, T O(Op 

1 dT¢ O2d~ (A15) 
bT d~ OrOpJ 

Note: the derivatives: 

,. T' L - - ~ - J , .  T' 
O-'Aenr O2Aerr (AI6) 
0~ 0p' 0~ Or 

have been evaluated numerically. 
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A P P E N D I X  B: CROSSOVER E Q U A T I O N  OF STATE OF KISELEV 
A N D  SENGERS 

An alternative crossover equation of state has been proposed by 
Kiselev and Sengers and applied to represent the thermodynamic proper- 
ties of methane and ethane in a large range of temperatures and densities 
around the critical point [35]. This alternative crossover equation of state 
is expressed in terms of parametric variables r and 0 that are defined by the 
transformation 

r = r ( 1 - b 2 0 2 )  

A~ - dl r = kr/~OR -I~ + l/2(rg) 

(gl) 

(B2) 

with 

q2 
R(q) = 1 + - -  (B3) 

q o + q  

Here b 2 = ( y -  2p)/),(1 - 2/~) and qo = 0.3 are universal constants, where 
), = ( 2 -  q)v and B = (3v-),)/2, while g is a system-dependent constant that 
is inversely proportional to the so-called Ginzburg number [13, 65]. In 

- t e X a s . o f  these variables the crossover equation for the reduced Helmholtz 
free-energy density has the form 

, O)=kr2-~R~(rg)  atPo(O) + ~ cirJ 'R-Ji(rg)  ~i(O) (134) 
i=1 

where 7/;(0)' are universal functions of the parameter 0 presented in 
Table Ill in/the article by Kiselev and Sengers [35]. However, in that 
article the e~{ponents z]i of the factor R-3'(rg) in Eq. (B4) were incorrectly 
identified with the exponents Ai of the factor a r ~' for i~> 3. Equation (B4) 
replaces ,F2i. (39) and (A1) in Ref. 35, and Eqs. (A10)-(A13) in Ref. 35 
should r~'/d 

/ (B5) / At = A, = vco 
/ 

/ 

: ' /  z], = A, = 2A, (B6) 

z l 3 = A 4 = y + f l _  1, ~3 =z~4 = A 3 -  1/2 (B7) 

z15 = vco5, ']5 = A5 - 1/2 (B8) 

We also note that Fig. 8 in Ref. 35 does not show the isobaric specific-heat 
capacity C? of methane but of ethane, as correctly stated in the caption of 

this figure. 
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The equation of Kiselev and Sengers represents a more phenomeno- 
logical approach to deal with the crossover problem. However, being 
expressed in parametric variables r and 0 directly, the equation is simpler 
for computer programming, since it avoids the iteration associated with 
obtaining the solution of the coupled equations (18) and (19) as discussed 
by Luettmer-Strathmann et al. [20]. The crossover equation of state of 
Kiselev and Sengers, applied to methane and ethane, is valid in a range of 
temperatures and densities comparable to that of the crossover equation of 
state formulated in the present paper. Hence, an alternative practical cross- 
over equation of state for mixtures of methane and ethane may be obtained 
by making the system-dependent coefficients in the equation of Kiselev and 
Sengers ~ dependent as was done by Povodyrev et al. [51] for the 
asymptotic critical behavior of the thermodynamic properties of methane 
and ethane. 
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